The problems with counting ancestors in a simple genetic algorithm

  • Authors:
  • Robert Collier;Mark Wineberg

  • Affiliations:
  • Department of Computing and Information Science, University of Guelph, Guelph, Ontario, Canada;Department of Computing and Information Science, University of Guelph, Guelph, Ontario, Canada

  • Venue:
  • ECAL'07 Proceedings of the 9th European conference on Advances in artificial life
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

The ease with which the genetic algorithm can generate good solutions to challenging optimization problems has resulted in a tendency for researchers to overlook the easily gathered and largely untapped raw data present in the ancestral relationships that guide a population to convergence. This article introduces the notion of a lineage tree structure and associated ancestor count measure that reveals unexpected regularities when studying instances of a simple genetic algorithm applied to three disparate problems. Consequently, a series of explanatory models was constructed to identify the components of the underlying evolutionary mechanism that may be responsible for the commonalities observed. These components (exponential growth of member parentage and inbreeding caused by the appearance of duplicates and shared ancestries) place constraints on the number of ancestors that a solution may have; an insight that may prove valuable for future analysis of the behavior of the genetic algorithm.