Neural network ensemble training by sequential interaction

  • Authors:
  • M. A. H. Akhand;Kazuyuki Murase

  • Affiliations:
  • Graduate School of Engineering, University of Fukui, Japan;Graduate School of Engineering, University of Fukui, Japan

  • Venue:
  • ICANN'07 Proceedings of the 17th international conference on Artificial neural networks
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Neural network ensemble (NNE) has been shown to outperform single neural network (NN) in terms of generalization ability. The performance of NNE is therefore depends on well diversity among component NNs. Popular NNE methods, such as bagging and boosting, follow data sampling technique to achieve diversity. In such methods, NN is trained independently with a particular training set that is probabilistically created. Due to independent training strategy there is a lack of interaction among component NNs. To achieve training time interaction, negative correlation learning (NCL) has been proposed for simultaneous training. NCL demands direct communication among component NNs; which is not possible in bagging and boosting. In this study, first we modify the NCL from simultaneous to sequential style and then induce in bagging and boosting for interaction purpose. Empirical studies exhibited that sequential training time interaction increased diversity among component NNs and outperformed conventional methods in generalization ability.