Simulatable VRFs with applications to multi-theorem NIZK

  • Authors:
  • Melissa Chase;Anna Lysyanskaya

  • Affiliations:
  • Computer Science Department, Brown University, Providence, RI;Computer Science Department, Brown University, Providence, RI

  • Venue:
  • CRYPTO'07 Proceedings of the 27th annual international cryptology conference on Advances in cryptology
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper introduces simulatable verifiable random functions (sVRF). VRFs are similar to pseudorandom functions, except that they are also verifiable: corresponding to each seed SK, there is a public key PK, and for y = FPK(x), it is possible to prove that y is indeed the value of the function seeded by SK. A simulatable VRF is a VRF for which this proof can be simulated, so a simulator can pretend that the value of FPK(x) is any y. Our contributions are as follows. We introduce the notion of sVRF. We give two constructions: one from general assumptions (based on NIZK), but inefficient, just as a proof of concept; the other construction is practical and based on a special assumption about composite-order groups with bilinear maps. We then use an sVRF to get a direct transformation from a single-theorem non-interactive zero-knowledge proof system for a language L to a multi-theorem non-interactive proof system for the same language L.