Tweakable enciphering schemes from hash-sum-expansion

  • Authors:
  • Kazuhiko Minematsu;Toshiyasu Matsushima

  • Affiliations:
  • NEC Corporation, Kawasaki, Japan and Waseda University, Tokyo, Japan;Waseda University, Tokyo, Japan

  • Venue:
  • INDOCRYPT'07 Proceedings of the cryptology 8th international conference on Progress in cryptology
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study a tweakable blockcipher for arbitrarily long message (also called a tweakable enciphering scheme) that consists of a universal hash function and an expansion, a keyed function with short input and long output. Such schemes, called HCTR and HCH, have been recently proposed. They used (a variant of) the counter mode of a block-cipher for the expansion. We provide a security proof of a structure that underlies HCTR and HCH. We prove that the expansion can be instantiated with any function secure against Known-plaintext attacks (KPAs), which is called a weak pseudorandom function (WPRF). As an application of our proof, we provide efficient blockcipher-based schemes comparable to HCH and HCTR. For the double-block-length case, our result is an interesting extension of previous attempts to build a double-block-length cryptographic permutation using WPRF.