An algorithm to mine general association rules from tabular data

  • Authors:
  • Siyamand Ayubi;Maybin Muyeba;John Keane

  • Affiliations:
  • Faculty of Engineering;Liverpool Hope University, School of Computing, Liverpool, UK;University of Manchester, School of Computer Science, Manchester, UK

  • Venue:
  • IDEAL'07 Proceedings of the 8th international conference on Intelligent data engineering and automated learning
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Mining association rules is a major technique within data mining and has many applications. Most methods for mining association rules from tabular data mine simple rules which only represent equality in their items. Limiting the operator only to "=" results in many interesting frequent patterns that may exist not being identified. It is obvious that where there is an order between objects, greater than or less than a value is as important as equality. This motivates extension, from simple equality, to a more general set of operators. We address the problem of mining general association rules in tabular data where rules can have all operators {≤,,≠,=} in their antecedent part. The proposed algorithm, Mining General Rules (MGR), is applicable to datasets with discrete-ordered attributes and on quantitative discretized attributes. The proposed algorithm stores candidate general itemsets in a tree structure in such a way that supports of complex itemsets can be recursively computed from supports of simpler itemsets. The algorithm is shown to have benefits in terms of time complexity, memory management and has great potential for parallelization.