Segmentation of myocardial volumes from real-time 3D echocardiography using an incompressibility constraint

  • Authors:
  • Yun Zhu;Xenophon Papademetris;Albert Sinusas;James S. Duncan

  • Affiliations:
  • Department of Biomedical Engineering, Yale University;Department of Diagnostic Radiology, Yale University;Department of Diagnostic Radiology, Yale University;Department of Biomedical Engineering, Yale University and Department of Diagnostic Radiology, Yale University

  • Venue:
  • MICCAI'07 Proceedings of the 10th international conference on Medical image computing and computer-assisted intervention - Volume Part I
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Real-time three-dimensional (RT3D) echocardiography is a new imaging modality that presents the unique opportunity to visualize the complex three-dimensional (3-D) shape and the motion of left ventricle (LV) in vivo. To take advantage of this opportunity, automatic segmentation of LV myocardium is essential. While there are a variety of efforts on the segmentation of LV endocardial (ENDO) boundaries, the segmentation of epicardial (EPI) boundaries is still problematic. In this paper, we present a new approach of coupled-surfaces propagation to address this problem. Our method is motivated by the idea that the volume of the myocardium is close to being constant during a cardiac cycle and takes this tight coupling as an important constraint. We employ two surfaces, each driven by the image-derived information that takes into account the ultrasound physics by modeling speckle using shifted Rayleigh distribution while maintaining the coupling. By evolving two surfaces simultaneously, the final representation of myocardium is thus achieved. Results from 328 sets of RT3D echocardiographic data are evaluated against the outlines of three observers. We show that the results from automatic segmentation are comparable to those from manual segmentation.