Joint source-cryptographic-channel coding based on linear block codes

  • Authors:
  • Haruhiko Kaneko;Eiji Fujiwara

  • Affiliations:
  • Graduate School of Information Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan;Graduate School of Information Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan

  • Venue:
  • AAECC'07 Proceedings of the 17th international conference on Applied algebra, algebraic algorithms and error-correcting codes
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper proposes a joint coding with three functions: source coding, channel coding, and public-key encryption. A codeword is simply generated as a product of an encoding matrix and a sparse information word. This encoding method has much lower encoding complexity than the conventional coding techniques in which source coding, encryption, and channel coding are successively applied to an information word. The encoding matrix is generated by using two linear error control codes and randomly generated nonsingular matrices. Encryption is based on the intractableness of factorizing a matrix into randomly constructed factor matrices, and of decoding an error control code defined by a random parity-check matrix. Evaluation shows that the proposed joint coding gives a lower bit error rate and a superior compression ratio than the conventional codings.