Modeling the effect of forwarding in a multi-hop ad hoc networks with weighted fair queueing

  • Authors:
  • Ralph El Khoury;Rachid El-Azouzi

  • Affiliations:
  • LIA, CERI, Université d'Avignon, Avignon, France;LIA, CERI, Université d'Avignon, Avignon, France

  • Venue:
  • MSN'07 Proceedings of the 3rd international conference on Mobile ad-hoc and sensor networks
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Consider a wireless ad hoc network with random access channel. We present a model that takes into account topology, routing, random access in MAC layer (governed by IEEE 802.11orslotted aloha) and forwarding probability. In this paper, we are focusing to study the effect of cooperation on the stability and throughput of ad-hoc network. Forwarding packets of other nodes is an example of activity that requires such a collaboration. Hence, it may not be in interest of a node to always forward the requesting packet. We propose a new approach (based on cycle of transmissions) to derive throughput of multi-hop routes and stability of forwarding queues. With this cycle approach, we correct the analytical expressions derived in [2] and discover that their results are valid only in particular cases such as symmetric networks. However, in this paper, we get extended results for general network case. Moreover, we confirm that (i) the forwarding queues in a system of weighted fair queues has a special property and (ii) the end to end throughput of a connection does not depend on the load of the intermediate forwarding queues between a source and a destination. We perform extensive simulations and verify that the analytical results exactly match the results obtained from simulations.