A solution for bi-level network design problem through nash genetic algorithm

  • Authors:
  • Jong Ryul Kim;Jung Bok Jo;Hwang Kyu Yang

  • Affiliations:
  • Division of Computer and Information Engineering, Dongseo University, Busan, Republic of Korea;Division of Computer and Information Engineering, Dongseo University, Busan, Republic of Korea;Division of Computer and Information Engineering, Dongseo University, Busan, Republic of Korea

  • Venue:
  • ICHIT'06 Proceedings of the 1st international conference on Advances in hybrid information technology
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a Nash genetic algorithm (Nash GA) as a solution for a network design problem, formulated as a bi-level programming model and designs a backbone topology in a hierarchical Link-State (LS) routing domain. Given that the sound backbone topology structure has a great impact on the overall routing performance in a hierarchical LS domain, the importance of this research is evident. The proposed decision model will find an optimal configuration that consists of backbone router for Backbone Provider (BP), router for Internet Service Provider (ISP), and connection link properly meeting two-pronged engineering goals: i.e., average message delay and connection costs. It is also presumed that there are decision makers for BP and the decision makers for ISP join in the decision making process in order to optimize the own objective function. The experiment results clearly indicates that it is essential to the effective operations of hierarchical LS routing domain to consider not only the engineering aspects but also specific benefits from systematical layout of backbone network, which presents the validity of the decision model and Nash GA.