Interplay of processing and routing in aggregate query optimization for sensor networks

  • Authors:
  • Niki Trigoni;Alexandre Guitton;Antonios Skordylis

  • Affiliations:
  • Computing Laboratory, University of Oxford, Oxford, UK;Computing Laboratory, University of Oxford, Oxford, UK;Computing Laboratory, University of Oxford, Oxford, UK

  • Venue:
  • ICDCN'08 Proceedings of the 9th international conference on Distributed computing and networking
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a novel approach to processing continuous aggregate queries in sensor networks, which lifts the assumption of tree-based routing. Given a query workload and a special-purpose gateway node where results are expected, the query optimizer exploits query correlations in order to generate an energy-efficient distributed evaluation plan. The proposed optimization algorithms identify common query sub-aggregates, and propose common routing structures to share the sub-aggregates at an early stage. Moreover, they avoid routing sub-aggregates of the same query through long-disjoint paths, thus further reducing the communication cost of result propagation. The proposed algorithms are fully-distributed, and are shown to offer significant communication savings compared to existing tree-based approaches. A thorough experimental evaluation shows the benefits of the proposed techniques for a variety of query workloads and network topologies.