A parallel macro partitioning framework for solving mixed integer programs

  • Authors:
  • Mahdi Namazifar;Andrew J. Miller

  • Affiliations:
  • Industrial and Systems Engineering Department, University of Wisconsin-Madison, Madison, Wisconsin;Industrial and Systems Engineering Department, University of Wisconsin-Madison, Madison, Wisconsin

  • Venue:
  • CPAIOR'08 Proceedings of the 5th international conference on Integration of AI and OR techniques in constraint programming for combinatorial optimization problems
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Mixed Integer Programs are a class of optimization problems which have a vast range of applications in engineering, business, science, health care, and other areas. For many applications, however, problems of realistic size can take a an impractical amount of time to solve on a single workstation. However, using parallel computing resources to solve MIP is difficult, as parallelizing the standard branch-and-bound framework presents an array of challenges. In this paper we present a novel framework called a Parallel Macro Partitioning (PMaP) framework for solving mixed integer programs in parallel. The framework exploit ideas from modern MIP heuristics to partition the problem at a high-level into MIP subproblems, each of which can be solved on a separate processor by an MIP algorithm. Initial computational resources suggest that PMaP has significant promise as a framework capable of bringing many processors to bear effectively on difficult problems.