A new algorithm for the maximum weighted stable set problem in claw-free graphs

  • Authors:
  • Gianpaolo Oriolo;Ugo Pietropaoli;Gautier Stauffer

  • Affiliations:
  • Università di Roma "Tor Vergata", Dipartimento di Ingegneria dell'Impresa, Roma, Italy;Università di Roma "Tor Vergata", Dipartimento di Ingegneria dell'Impresa, Roma, Italy;IBM Research, Zurich Research Lab, Rüschlikon, Switzerland

  • Venue:
  • IPCO'08 Proceedings of the 13th international conference on Integer programming and combinatorial optimization
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we introduce two powerful graph reductions for the maximum weighted stable set (mwss) in general graphs. We show that these reductions allow to reduce the mwss in claw-free graphs to the mwss in a class of quasi-line graphs, that we call bipolar-free. For this latter class, we provide a new algorithmic decomposition theorem running in polynomial time. We then exploit this decomposition result and our reduction tools again to transform the problem to either a single matching problem or a longest path computation in an acyclic auxiliary graph (in this latter part we use some results of Pulleyblank and Shepherd [10]). Putting all the pieces together, the main contribution of this paper is a new polynomial time algorithm for the mwss in claw-free graphs. A rough analysis of the complexity of this algorithm gives a time bound of O(n6), where n is the number of vertices in the graph, and which we hope can be improved by a finer analysis. Incidentally, we prove that the mwss problem can be solved efficiently for any class of graphs that admits a "suitable" decomposition into pieces where the mwss is easy.