On the structure of industrial SAT instances

  • Authors:
  • Carlos Ansótegui;María Luisa Bonet;Jordi Levy

  • Affiliations:
  • Universitat de Lleida, DIEI;Universitat Politècnica de Catalunya, LSI;Artificial Intelligence Research Institute, CSIC

  • Venue:
  • CP'09 Proceedings of the 15th international conference on Principles and practice of constraint programming
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

During this decade, it has been observed that many realworld graphs, like the web and some social and metabolic networks, have a scale-free structure. These graphs are characterized by a big variability in the arity of nodes, that seems to follow a power-law distribution. This came as a big surprise to researchers steeped in the tradition of classical random networks. SAT instances can also be seen as (bi-partite) graphs. In this paper we study many families of industrial SAT instances used in SAT competitions, and show that most of them also present this scale-free structure. On the contrary, random SAT instances, viewed as graphs, are closer to the classical random graph model, where arity of nodes follows a Poisson distribution with small variability. This would explain their distinct nature. We also analyze what happens when we instantiate a fraction of the variables, at random or using some heuristics, and how the scale-free structure is modified by these instantiations. Finally, we study how the structure is modified during the execution of a SAT solver, concluding that the scale-free structure is preserved.