Modified widest disjoint paths algorithm for multipath routing

  • Authors:
  • Shangming Zhu;Zhili Zhang;Xinhua Zhuang

  • Affiliations:
  • Department of Computer Science, East China University of Science and Technology, Shanghai, China;Department of Computer Science, University of Minnesota, Minneapolis, MN;Department of Computer Science, University of Missouri-Columbia, Columbia

  • Venue:
  • NPC'07 Proceedings of the 2007 IFIP international conference on Network and parallel computing
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Widest Disjoint Paths (WDP) algorithm is a promising multipath routing algorithm aimed at selecting good paths for routing a flow between a source-destination pair, where their bottleneck links are mutually disjoint. Nevertheless, the complexity of WDP algorithm is relatively high due to the fact that the good path selection process considers all available paths. To reduce its complexity, This paper proposes a modified WDP algorithm, which uses only a subset of available paths based on shortest widest paths, thereby limiting the number of candidate paths considered. As a result, the number of iterations in the good path selection process is significantly reduced. Performance analysis shows the modified scheme is more efficient than the original algorithm in a large network. Simulation results demonstrate that, in comparison with the original WDP algorithm, the modified WDP algorithm leads to lower latency and faster packets transferring process as the number of available paths increases.