Legally-enforceable fairness in secure two-party computation

  • Authors:
  • Andrew Y. Lindell

  • Affiliations:
  • Aladdin Knowledge Systems and Bar-Ilan University, Israel

  • Venue:
  • CT-RSA'08 Proceedings of the 2008 The Cryptopgraphers' Track at the RSA conference on Topics in cryptology
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

In the setting of secure multiparty computation, a set of mutually distrustful parties wish to securely compute some joint function of their private inputs. The computation should be carried out in a secure way, meaning that the properties privacy, correctness, independence of inputs, fairness and guaranteed output delivery should all be preserved. Unfortunately, in the case of no honest majority - and specifically in the important two-party case - it is impossible to achieve fairness and guaranteed output delivery. In this paper, we show how a legal infrastructure that respects digital signatures can be used to enforce fairness in two-party computation. Our protocol has the property that if one party obtains output while the other does not (meaning that fairness is breached), then the party not obtaining output has a digitally signed cheque from the other party. Thus, fairness can be "enforced" in the sense that any breach results in a loss of money by the adversarial party.