Cancellation of critical points in 2D and 3D Morse and Morse-Smale complexes

  • Authors:
  • Lidija Čomić;Leila De Floriani

  • Affiliations:
  • FTN, University of Novi Sad, Serbia;University of Genova, Italy and University of Maryland

  • Venue:
  • DGCI'08 Proceedings of the 14th IAPR international conference on Discrete geometry for computer imagery
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Morse theory studies the relationship between the topology of a manifold M and the critical points of a scalar function f defined on M. The Morse-Smale complex associated with f induces a subdivision of M into regions of uniform gradient flow, and represents the topology of M in a compact way. Function f can be simplified by cancelling its critical points in pairs, thus simplifying the topological representation of M, provided by the Morse-Smale complex. Here, we investigate the effect of the cancellation of critical points of f in Morse-Smale complexes in two and three dimensions by showing how the change of connectivity of a Morse-Smale complex induced by a cancellation can be interpreted and understood in a more intuitive and straightforward way as a change of connectivity in the corresponding ascending and descending Morse complexes. We consider a discrete counterpart of the Morse-Smale complex, called a quasi-Morse complex, and we present a compact graph-based representation of such complex and of its associated discrete Morse complexes, showing also how such representation is affected by a cancellation.