Genetic programming and class-wise orthogonal transformation for dimension reduction in classification problems

  • Authors:
  • Kourosh Neshatian;Mengjie Zhang

  • Affiliations:
  • School of Mathematics, Statistics and Computer Science, Victoria University of Wellington, Wellington, New Zealand;School of Mathematics, Statistics and Computer Science, Victoria University of Wellington, Wellington, New Zealand

  • Venue:
  • EuroGP'08 Proceedings of the 11th European conference on Genetic programming
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper describes a new method using genetic programming (GP) in dimension reduction for classification problems. Two issues have been considered: (a) transforming the original feature space to a set of new features (components) that are more useful in classification, (b) finding a ranking measure to select more significant features. The paper presents a new class-wise orthogonal transformation function to construct a variable terminal pool for the proposed GP system. Information entropy over class intervals is used as the ranking measure for the constructed features. The performance measure is the classification accuracy on 12 benchmark problems using constructed features in a decision tree classifier. The new approach is compared with the principle component analysis (PCA) method and the results show that the new approach outperforms the PCA method on most of the problems in terms of final classification performance and dimension reduction.