Ptolemaic graphs and interval graphs are leaf powers

  • Authors:
  • Andreas Brandstädt;Christian Hundt

  • Affiliations:
  • Institut für Informatik, Universität Rostock, Germany;Institut für Informatik, Universität Rostock, Germany

  • Venue:
  • LATIN'08 Proceedings of the 8th Latin American conference on Theoretical informatics
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Motivated by the problem of reconstructing evolutionary history, Nishimura, Radge and Thilikos introduced the notion of k-leaf powers as the class of graphs G = (V, E) which have a k-leaf root, i.e., a tree T with leaf set V where xy ∈ E if and only if the T-distance between x and y is at most k. It is known that leaf powers are strongly chordal (i.e., sun-free chordal) graphs. Despite extensive research, the problem of recognizing leaf powers, i.e., to decide for a given graph G whether it is a k-leaf power for some k, remains open. Much less is known on the complexity of finding the leaf rank of G, i.e., to determine the minimum number k such that G is a k-leaf power. A result by Bibelnieks and Dearing implies that not every strongly chordal graph is a leaf power. Recently, Kennedy, Lin and Yan have shown that dart- and gem-free chordal graphs are 4-leaf powers. We generalize their result and show that ptolemaic (i.e., gem-free chordal) graphs are leaf powers. Moreover, ptolemaic graphs have unbounded leaf rank. Furthermore, we show that interval graphs are leaf powers which implies that leaf powers have unbounded clique-width. Finally, we characterize unit interval graphs as those leaf powers having a caterpillar leaf root.