Secure relaying: can publicly transferred keys increase degrees of freedom?

  • Authors:
  • Tùng T. Kim;H. Vincent Poor

  • Affiliations:
  • Department of Electrical Engineering, Princeton University, Princeton, NJ;Department of Electrical Engineering, Princeton University, Princeton, NJ

  • Venue:
  • Allerton'09 Proceedings of the 47th annual Allerton conference on Communication, control, and computing
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Secure communication over a half-duplex relay system in the presence of an external wiretapper is investigated. In such a scenario, conventional relaying protocols generally provide secrecy rates that converge to a finite constant in the high signal-to-noise ratio (SNR) regime. It is shown in this work that strictly superior performance can be achieved by allowing the destination to transfer random keys in the form of known interference to the relay insecurely over the wireless medium. When there is no direct link beteen the source and the destination, an amplify-and-forward (AF) protocol is shown to achieve a secrecy rate that scales as 1/2 log SNR, if each of the legitimate nodes has a single antenna only. However, in the presence of a direct link between source and destination, this scaling rule no longer applies. The bottleneck of the AF scheme in the presence of a direct source-destination link is identified, motivating the use of multiple antennas at the destination to almost surely guarantee a secure degree of freedom of one half over the channel. The results hold even if the eavesdropper has more antennas than the source and the relay combined.