A fully deterministic micro-macro simulation of complex flows involving reversible network fluid models

  • Authors:
  • B. Mokdad;A. Ammar;M. Normandin;F. Chinesta;J. R. Clermont

  • Affiliations:
  • Laboratoire de Rhéologie, INPG, UJF, CNRS (UMR 5520), 1301 rue de la piscine, BP 53 Domaine Universitaire, F-38041 Grenoble Cedex 9, France;Laboratoire de Rhéologie, INPG, UJF, CNRS (UMR 5520), 1301 rue de la piscine, BP 53 Domaine Universitaire, F-38041 Grenoble Cedex 9, France;Laboratoire de Rhéologie, INPG, UJF, CNRS (UMR 5520), 1301 rue de la piscine, BP 53 Domaine Universitaire, F-38041 Grenoble Cedex 9, France;EADS Corporate Foundatuion International Chair, GeM UMR CNRS - Centrale Nantes, 1 rue de la Noe, BP 92101, F-44321 Nantes Cedex 3, France;Laboratoire de Rhéologie, INPG, UJF, CNRS (UMR 5520), 1301 rue de la piscine, BP 53 Domaine Universitaire, F-38041 Grenoble Cedex 9, France

  • Venue:
  • Mathematics and Computers in Simulation
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Micro-macro models associate the coarse-grained molecular scale of the kinetic theory to the macroscopic scale of continuum mechanics. The conservation equations are solved along with the microscopic equation or the so-called Fokker-Planck equation. In this paper, a micro-macro approach based on the separated representation introduced in [2,3] with the Stream-Tube method [10-12,21,22] is implemented to study the main features of fiber and polymer networks solutions in complex flows. The Fokker-Planck equation, that defines the fluid microstructure, is solved using a separated representation strategy and is coupled to the macroscopic equations through the macroscopic extra-stress tensor evaluated at the microscopic level. Then, the flow kinematics is solved by applying the Stream-Tube method.