Time-harmonic solution for acousto-elastic interaction with controllability and spectral elements

  • Authors:
  • Sanna Mönkölä

  • Affiliations:
  • Department of Mathematical Information Technology, University of Jyväskylä, P.O. Box 35 (Agora), FI-40014 University of Jyväskylä, Finland

  • Venue:
  • Journal of Computational and Applied Mathematics
  • Year:
  • 2010

Quantified Score

Hi-index 7.30

Visualization

Abstract

The classical way of solving the time-harmonic linear acousto-elastic wave problem is to discretize the equations with finite elements or finite differences. This approach leads to large-scale indefinite complex-valued linear systems. For these kinds of systems, it is difficult to construct efficient iterative solution methods. That is why we use an alternative approach and solve the time-harmonic problem by controlling the solution of the corresponding time dependent wave equation. In this paper, we use an unsymmetric formulation, where fluid-structure interaction is modeled as a coupling between pressure and displacement. The coupled problem is discretized in space domain with spectral elements and in time domain with central finite differences. After discretization, exact controllability problem is reformulated as a least-squares problem, which is solved by the conjugate gradient method.