A GPGPU compiler for memory optimization and parallelism management

  • Authors:
  • Yi Yang;Ping Xiang;Jingfei Kong;Huiyang Zhou

  • Affiliations:
  • North Carolina State University, Raleigh, NC, USA;University of Central Florida, Orlando, FL, USA;University of Central Florida, Orlando, FL, USA;North Carolina State University, Raleigh, NC, USA

  • Venue:
  • PLDI '10 Proceedings of the 2010 ACM SIGPLAN conference on Programming language design and implementation
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a novel optimizing compiler for general purpose computation on graphics processing units (GPGPU). It addresses two major challenges of developing high performance GPGPU programs: effective utilization of GPU memory hierarchy and judicious management of parallelism. The input to our compiler is a naïve GPU kernel function, which is functionally correct but without any consideration for performance optimization. The compiler analyzes the code, identifies its memory access patterns, and generates both the optimized kernel and the kernel invocation parameters. Our optimization process includes vectorization and memory coalescing for memory bandwidth enhancement, tiling and unrolling for data reuse and parallelism management, and thread block remapping or address-offset insertion for partition-camping elimination. The experiments on a set of scientific and media processing algorithms show that our optimized code achieves very high performance, either superior or very close to the highly fine-tuned library, NVIDIA CUBLAS 2.2, and up to 128 times speedups over the naive versions. Another distinguishing feature of our compiler is the understandability of the optimized code, which is useful for performance analysis and algorithm refinement.