Interactive privacy via the median mechanism

  • Authors:
  • Aaron Roth;Tim Roughgarden

  • Affiliations:
  • Carnegie Mellon University, Pittsburgh, PA, USA;Stanford University, Stanford, CA, USA

  • Venue:
  • Proceedings of the forty-second ACM symposium on Theory of computing
  • Year:
  • 2010

Quantified Score

Hi-index 0.01

Visualization

Abstract

We define a new interactive differentially private mechanism --- the median mechanism --- for answering arbitrary predicate queries that arrive online. Given fixed accuracy and privacy constraints, this mechanism can answer exponentially more queries than the previously best known interactive privacy mechanism (the Laplace mechanism, which independently perturbs each query result). With respect to the number of queries, our guarantee is close to the best possible, even for non-interactive privacy mechanisms. Conceptually, the median mechanism is the first privacy mechanism capable of identifying and exploiting correlations among queries in an interactive setting. We also give an efficient implementation of the median mechanism, with running time polynomial in the number of queries, the database size, and the domain size. This efficient implementation guarantees privacy for all input databases, and accurate query results for almost all input distributions. The dependence of the privacy on the number of queries in this mechanism improves over that of the best previously known efficient mechanism by a super-polynomial factor, even in the non-interactive setting.