Adaptive bug isolation

  • Authors:
  • Piramanayagam Arumuga Nainar;Ben Liblit

  • Affiliations:
  • University of Wisconsin--Madison;University of Wisconsin--Madison

  • Venue:
  • Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Statistical debugging uses lightweight instrumentation and statistical models to identify program behaviors that are strongly predictive of failure. However, most software is mostly correct; nearly all monitored behaviors are poor predictors of failure. We propose an adaptive monitoring strategy that mitigates the overhead associated with monitoring poor failure predictors. We begin by monitoring a small portion of the program, then automatically refine instrumentation over time to zero in on bugs. We formulate this approach as a search on the control-dependence graph of the program. We present and evaluate various heuristics that can be used for this search. We also discuss the construction of a binary instrumentor for incorporating the feedback loop into post-deployment monitoring. Performance measurements show that adaptive bug isolation yields an average performance overhead of 1% for a class of large applications, as opposed to 87% for realistic sampling-based instrumentation and 300% for complete binary instrumentation.