An empirical study of reported bugs in server software with implications for automated bug diagnosis

  • Authors:
  • Swarup Kumar Sahoo;John Criswell;Vikram Adve

  • Affiliations:
  • University of Illinois, Urbana, IL;University of Illinois, Urbana, IL;University of Illinois, Urbana, IL

  • Venue:
  • Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Reproducing bug symptoms is a prerequisite for performing automatic bug diagnosis. Do bugs have characteristics that ease or hinder automatic bug diagnosis? In this paper, we conduct a thorough empirical study of several key characteristics of bugs that affect reproducibility at the production site. We examine randomly selected bug reports of six server applications and consider their implications on automatic bug diagnosis tools. Our results are promising. From the study, we find that nearly 82% of bug symptoms can be reproduced deterministically by re-running with the same set of inputs at the production site. We further find that very few input requests are needed to reproduce most failures; in fact, just one input request after session establishment suffices to reproduce the failure in nearly 77% of the cases. We describe the implications of the results on reproducing software failures and designing automated diagnosis tools for production runs.