Joint power control and beamforming codebook design for MISO channels with limited feedback

  • Authors:
  • Behrouz Khoshnevis;Wei Yu

  • Affiliations:
  • Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada;Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada

  • Venue:
  • GLOBECOM'09 Proceedings of the 28th IEEE conference on Global telecommunications
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper investigates the joint design and optimization of the power control and beamforming codebooks for the single-user multiple-input single-output (MISO) wireless systems with a rate-limited feedback link. The problem is cast in the form of minimizing the outage probability subject to the transmit power constraint and cardinality constraints on the beamforming and power codebooks. We show that by appropriately choosing and fixing the beamforming codebook and optimizing the power codebook for that beamforming codebook, it is possible to achieve a performance very close to the optimal joint optimization. Further, this paper investigates the optimal tradeoffs between beamforming and power codebook sizes for different number of feedback bits and transmit antennas. Given a target outage probability, our results provide the optimal codebook sizes independent of the target rate. As the outage probability decreases, we show that the optimal joint design should use fewer feedback bits for beamforming and more feedback bits for power control. The jointly optimized beamforming and power control modules combine the power gain of beamforming and diversity gain of power control, which enable it to approach the performance of the system with perfect channel state information as the feedback link capacity increases to infinity -- something that is not possible with beamforming or power control alone.