Unified analysis of linear block precoding for distributed antenna systems

  • Authors:
  • Toshiaki Koike-Akino;Andreas F. Molisch;Zhifeng Tao;Philip Orlik;Toshiyuki Kuze

  • Affiliations:
  • SEAS, Harvard University, Cambridge, MA;Depart. of Electrical Engineering, University of Southern California, Los Angeles, CA;Mitsubishi Electric Research Labs, Cambridge, MA;Mitsubishi Electric Research Labs, Cambridge, MA;Mitsubishi Electric Corporation, Kanagawa, Japan

  • Venue:
  • GLOBECOM'09 Proceedings of the 28th IEEE conference on Global telecommunications
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Block transmission with cyclic prefix is a promising technique to realize high-speed data rates in frequency selective fading channels. Many popular linear precoding schemes, including orthogonal frequency-division multiplexing (OFDM), single-carrier (SC) block transmission, and time-reversal (TR), can be interpreted as such a block transmission. This paper presents a unified performance analysis which shows how the optimal precoding strategy depends on the receiver type and the optimization criterion (capacity and mean-square error). We analyze three variants of TR methods (based on maximum-ratio combining, equal-gain combining and selective combining) and two-types of pre-equalization methods (zero-forcing and minimum mean-square error). As one application of our framework, we derive optimal power control for OFDM in the presence of interference limitation for distributed antenna systems; we find that without power control, OFDM does not have any capacity advantage over SC transmissions. When comparing SC and TR, we verify that for single-antenna systems at high SNRs, SC has a capacity advantage; however, TR performs better in the low SNR regime. For multiple-antenna systems, TR always provides higher capacity, and the capacity of TR can approach that of optimal precoders with a number of distributed antennas.