Exact, scaled image rotation using the finite radon transform

  • Authors:
  • Imants Svalbe

  • Affiliations:
  • School of Physics, Monash University, Australia

  • Venue:
  • DGCI'09 Proceedings of the 15th IAPR international conference on Discrete geometry for computer imagery
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

In traditional tomography, a close approximation of an object can be reconstructed from its sinogram. The orientation (or zero angle) of the reconstructed image can be chosen to be any one of the many projected view angles. The Finite Radon Transform (FRT) is a discrete analogue of classical tomography. It permits exact reconstruction of an object from its discrete projections. Reordering the discrete FRT projections is equivalent to an exact digital image rotation. Each FRT-based rotation preserves the intensity of all original image pixels and allocates new pixel values through use of an area-preserving, angle-specific interpolation filter. This approach may find application in image rotation for feature matching, and to improve the display of zoomed and rotated images.