L∞-stability of vertex-based MUSCL finite volume schemes on unstructured grids: Simulation of incompressible flows with high density ratios

  • Authors:
  • Caterina Calgaro;Emile Chane-Kane;Emmanuel Creusé;Thierry Goudon

  • Affiliations:
  • Laboratoire Paul Painlevé, UMR 8524, C.N.R.S.-Université Lille 1, Sciences et Technologies, Cité Scientifique, F-59655 Villeneuve d'Ascq cedex, France and EPI SIMPAF, Centre de Rech ...;EPI SIMPAF, Centre de Recherche INRIA Lille Nord Europe, Parc Scientifique de la Haute Borne, Avenue Halley B.P. 70478, F-59658 Villeneuve d'Ascq cedex, France;Laboratoire Paul Painlevé, UMR 8524, C.N.R.S.-Université Lille 1, Sciences et Technologies, Cité Scientifique, F-59655 Villeneuve d'Ascq cedex, France and EPI SIMPAF, Centre de Rech ...;Laboratoire Paul Painlevé, UMR 8524, C.N.R.S.-Université Lille 1, Sciences et Technologies, Cité Scientifique, F-59655 Villeneuve d'Ascq cedex, France and EPI SIMPAF, Centre de Rech ...

  • Venue:
  • Journal of Computational Physics
  • Year:
  • 2010

Quantified Score

Hi-index 31.45

Visualization

Abstract

This work is devoted to the design of multi-dimensional finite volume schemes for solving transport equations on unstructured grids. In the framework of MUSCL vertex-based methods we construct numerical fluxes such that the local maximum property is guaranteed under an explicit Courant-Friedrichs-Levy condition. The method can be naturally completed by adaptive local mesh refinements and it turns out that the mesh generation is less constrained than when using the competitive cell-centered methods. We illustrate the effectiveness of the scheme by simulating variable density incompressible viscous flows. Numerical simulations underline the theoretical predictions and succeed in the computation of high density ratio phenomena such as a water bubble falling in air.