Bandwidth-guaranteed multicast in multi-channel multi-interface wireless mesh networks

  • Authors:
  • Hon Sun Chiu;Kwan L. Yeung;King-Shan Lui

  • Affiliations:
  • Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, PRC;Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, PRC;Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, PRC

  • Venue:
  • ICC'09 Proceedings of the 2009 IEEE international conference on Communications
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider multi-channel multi-interface wireless mesh networks with a schedule-based MAC protocol, where conflict-free transmission is ensured by requiring links assigned with the same channel and within the mutual interference range of each other to be active at different time slots. When a (point-to-multipoint) multicast call arrives, the call is accepted if a multicast distribution tree can be established for connecting the source node with all the receiving nodes, and with sufficient bandwidth reserved on each link. Otherwise, the call is rejected. To maximize the call acceptance rate, the multicast tree must be constructed judiciously upon each call arrival. Aiming at minimizing the carried load on the most-heavily loaded channel, and maximizing the residual capacity of the most heavily loaded node, an integer linear program (ILP) is formulated for multicast tree construction. Since solving ILP can be time-consuming, an efficient heuristic algorithm is then proposed. We compare the two tree construction algorithms by simulations. We found that both algorithms give comparable call acceptance rate, but the heuristic algorithm requires much shorter running time.