Detecting sinkhole attack and selective forwarding attack in wireless sensor networks

  • Authors:
  • Chanatip Tumrongwittayapak;Ruttikorn Varakulsiripunth

  • Affiliations:
  • Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand and Faculty of Engineering, Kasem Bundit University, Bangkok, Thailand;Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand

  • Venue:
  • ICICS'09 Proceedings of the 7th international conference on Information, communications and signal processing
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Security in Wireless Sensor Networks (WSNs) is especially challenging and quite different from traditional network security mechanisms. There are two major reasons. Firstly, there are severe constraints on these devices namely their minimal energy, computational and communicational capabilities. Secondly, there is an additional risk of physical attacks such as node capture and tampering. Moreover, cryptography based techniques alone are insufficient to secure WSNs [1]. Hence, intrusion detection techniques must be designed to detect the attacks. Further, these techniques should be lightweight because of resource-constrained nature of WSNs [2]. In this paper, we present a new approach of robust and lightweight solution for detecting the Sinkhole attack and the Selective Forwarding attack based on Received Signal Strength Indicator (RSSI) readings of messages. The proposed solution needs collaboration of some Extra Monitor (EM) node apart from the ordinary nodes. We use RSSI value from four EM nodes to determine the position of all sensor nodes which the Base Station (BS) is origin position (0,0). Later, we use this information as weight from the BS. Another functions of EM nodes are eavesdropper and monitor all traffics, in order to detect the Selective Forwarding attack in the network. Our solution is lightweight in the sense that monitor nodes were not loaded any ordinary nodes or BS and not cause a communication overhead.