Percussion synthesis based on models of nonlinear shell vibration

  • Authors:
  • Stefan Bilbao

  • Affiliations:
  • Acoustics and Fluid Dynamics Group, University of Edinburgh, Edinburgh, UK

  • Venue:
  • IEEE Transactions on Audio, Speech, and Language Processing - Special issue on virtual analog audio Effects and musical instruments
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

The synthesis of sound based on physical models of 2-D percussion instruments is problematic and has been approached only infrequently in the literature. Beyond the computational expense inherent to the simulation of 2-D systems, a deeper difficulty is in dealing with the strong nonlinearity exhibited by thin structures when struck--this nonlinearity leads to phenomena which are not captured, even approximately, by a linear model, and nearly all synthesis work is based on the assumption that the distributed resonating component of a musical instrument is linear. Perceptually, the effects of the vibration of a thin structure at high amplitudes can be heard as crashes, pitch glides, and the slow buildup of high-frequency energy characteristic of gongs. A large family of instruments may be described, approximately, as circular thin shells, of approximately spherical geometry, in which case a tractable PDE description, described here, is available. Time-domain finite-difference schemes, in radial coordinates, are a suitable method for synthesis. Stability conditions, numerical boundary conditions both at the edge and center, and implementation details are discussed, and simulation results are presented, highlighting the various perceptual effects mentioned above.