Variable-rate M-PSK communications without channel amplitude estimation

  • Authors:
  • Athanasios S. Lioumpas;George K. Karagiannidis

  • Affiliations:
  • Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece;Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece

  • Venue:
  • IEEE Transactions on Communications
  • Year:
  • 2010

Quantified Score

Hi-index 0.01

Visualization

Abstract

Channel estimation at the receiver side is essential to adaptive modulation schemes, prohibiting low complexity systems from using variable rate and/or variable power transmissions. Towards providing a solution to this problem, we introduce a variable-rate (VR) M-PSK modulation scheme, for communications over fading channels, in the absence of channel gain estimation at the receiver. The choice of the constellation size is based on the signal-plus-noise (S+N) sampling value rather than on the signal-to-noise ratio (S/N). It is analytically shown that S+N can serve as an attractive simpler criterion, alternative to S/N, for determining the modulation order in VR systems. In this way, low complexity transceivers can use VR transmissions in order to increase their spectral efficiency under an error performance constraint. As an application, we utilize the proposed VR modulation scheme in equal gain combining (EGC) diversity receivers.