Capacity analysis for integrate-and-fire neurons with descending action potential thresholds

  • Authors:
  • Prapun Suksompong;Toby Berger

  • Affiliations:
  • School of Information, Computer and Communication Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand;Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA

  • Venue:
  • IEEE Transactions on Information Theory - Special issue on information theory in molecular biology and neuroscience
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Understanding how a biological neuron works has been a major goal in neuroscience. Under the Poisson-excitation assumption, results from earlier study by Suksompong and Berger on the timing jitter in the leaky integrate-and-fire (LIF) model of neurons are used to determine families of neural thresholding functions that are appropriate in certain interesting senses. Next, the neuron is treated as a communication channel for which information-theoretic quantities can be calculated. In particular, the optimal distribution of the Poisson excitation intensity is numerically evaluated along with the corresponding capacity using the Blahut-Arimoto algorithm. Simple formulas which approximate the optimal intensity distribution are given. Furthermore, the Jimbo-Kunisawa algorithm is used to explore energy-efficient operations for neuron. Finally, a rate-matching argument leads to a unique operating condition which turns out to agree with experimentally observed rate.