ACR: An Adaptive Cost-Aware Buffer Replacement Algorithm for Flash Storage Devices

  • Authors:
  • Xian Tang;Xiaofeng Meng

  • Affiliations:
  • -;-

  • Venue:
  • MDM '10 Proceedings of the 2010 Eleventh International Conference on Mobile Data Management
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Flash disks are being widely used as an important alternative to conventional magnetic disks, although accessed through the same interface by applications, their distinguished feature, i.e., different read and write cost in the aspects of time, makes it necessary to reconsider the design of existing replacement algorithms to leverage their performance potential. Different from existing flash-aware buffer replacement policies that focus on the asymmetry of read and write operations, we address the “discrepancy” of the asymmetry for different flash disks, which is the fact that exists for a long time, while has drawn little attention by researchers since most existing flash-aware buffer replacement polices are somewhat based on the assumption that the cost of read operation is neglectable compared with that of write operation. In fact, this is not true for current flash disks on the market. We propose an adaptive cost-aware replacement policy (ACR) that uses three cost-based heuristics to select the victim page, thus can fairly make trade off between clean pages (their content remain unchanged) and dirty pages (their content is modified), and hence, can work well for different type of flash disks of large discrepancy. Further, in ACR, buffer pages are divided into clean list and dirty list, the newly entered pages will not be inserted at the MRU position of either list, but at some position in the middle, thus the once-requested pages can be flushed out from the buffer quickly and the frequently-requested pages can stay in buffer for a longer time. Such mechanism makes ACR adaptive to workloads of different access patterns. The experimental results on different traces and flash disks show that ACR not only adaptively tunes itself to workloads of different access patterns, but also works well for different kind of flash disks compared with existing methods.