Physicalnet: A Generic Framework for Managing and Programming Across Pervasive Computing Networks

  • Authors:
  • Pascal A. Vicaire;Zhiheng Xie;Enamul Hoque;John A. Stankovic

  • Affiliations:
  • -;-;-;-

  • Venue:
  • RTAS '10 Proceedings of the 2010 16th IEEE Real-Time and Embedded Technology and Applications Symposium
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper describes the design and implementation of a pervasive computing framework, named Physicalnet. Essentially, Physicalnet is a generic paradigm for managing and programming world-wide distributed heterogeneous sensor and actuator resources in a multi-user and multi-network environment. Using a four-tier light-weight service oriented architecture, Physicalnet enables global uniform access to heterogeneous resources and decouples applications from particular resources, locations and networks. Through a negotiator module, it allows a large number of applications to concurrently execute on the same resources and to span multiple physical networks and logical administrative domains. By providing a fine-grained use-based access rights control and conflict resolution mechanism, Physicalnet not only ensures owners having total control of sharing and protecting their resources, but also dramatically increases the number of applications that can concurrently execute on the devices. Furthermore, Physicalnet supports resource dynamic location-aware mobility, application run-time reconfigurability and on-the-fly access rights specification. To quantify the performance, we evaluate Physicalnet based on memory usage, the number of concurrent applications, and dynamic responsiveness. The results show Physicalnet has excellent performance, but low overheads.