Control of wireless networks with flow level dynamics under constant time scheduling

  • Authors:
  • Long Bao Le;Ravi R. Mazumdar

  • Affiliations:
  • Massachusetts Institute of Technology, Cambridge, USA;Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada

  • Venue:
  • Wireless Networks
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider a network control problem for wireless networks with flow level dynamics under the general k-hop interference model. In particular, we investigate the control problem in low load and high load regimes. In the low load regime, we show that the network can be stabilized by a regulated maximal scheduling policy considering flow level dynamics if the offered load satisfies a constraining bound condition. Because maximal scheduling is a general scheduling rule whose implementation is not specified, we propose a constant-time and distributed scheduling algorithm for a general k-hop interference model which can approximate the maximal scheduling policy within an arbitrarily small error. Under the stability condition, we show how to calculate transmission rates for different user classes such that the long-term (time average) network utility is maximized. This long-term network utility captures the real network performance due to the fact that under flow level dynamics, the number of users randomly change so instantaneous network utility maximization does not result in useful network performance. Our results imply that congestion control is unnecessary when the offered load is low and optimal user rates can be determined to maximize users' long-term satisfaction. In the high load regime where the network can be unstable under the regulated maximal scheduling policy, we propose a cross-layer congestion control and scheduling algorithm which can stabilize the network under arbitrary network load. Through extensive numerical analysis for some typical networks, we show that the proposed scheduling algorithm has much lower overhead than other existing queue-length-based constant-time scheduling schemes in the literature, and it achieves performance much better than the guaranteed bound.