Q-CSMA: queue-length based CSMA/CA algorithms for achieving maximum throughput and low delay in wireless networks

  • Authors:
  • Jian Ni;Bo Tan;R. Srikant

  • Affiliations:
  • Coordinated Science Laboratory and Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL;Coordinated Science Laboratory and Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL;Coordinated Science Laboratory and Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL

  • Venue:
  • INFOCOM'10 Proceedings of the 29th conference on Information communications
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Recently, it has been shown that CSMA-type random access algorithms can achieve the maximum possible throughput in ad hoc wireless networks. However, these algorithms assume an idealized continuous-time CSMA protocol where collisions can never occur. In addition, simulation results indicate that the delay performance of these algorithms can be quite bad. On the other hand, although some simple heuristics (such as distributed approximations of greedy maximal scheduling) can yield much better delay performance for a large set of arrival rates, they may only achieve a fraction of the capacity region in general. In this paper, we propose a discrete-time version of the CSMA algorithm. Central to our results is a discrete-time distributed randomized algorithm which is based on a generalization of the so-called Glauber dynamics from statistical physics, where multiple links are allowed to update their states in a single time slot. The algorithm generates collision-free transmission schedules while explicitly taking collisions into account during the control phase of the protocol, thus relaxing the perfect CSMA assumption. More importantly, the algorithm allows us to incorporate delay-reduction mechanisms which lead to very good delay performance while retaining the throughput-optimality property.