Network coding for multi-resolution multicast

  • Authors:
  • MinJi Kim;Daniel Lucani;Xiaomeng Shi;Fang Zhao;Muriel Médard

  • Affiliations:
  • Massachusetts Institute of Technology, Cambridge, MA;Massachusetts Institute of Technology, Cambridge, MA;Massachusetts Institute of Technology, Cambridge, MA;Massachusetts Institute of Technology, Cambridge, MA;Massachusetts Institute of Technology, Cambridge, MA

  • Venue:
  • INFOCOM'10 Proceedings of the 29th conference on Information communications
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Multi-resolution codes enable multicast at different rates to different receivers, a setup that is often desirable for graphics or video streaming. We propose a simple, distributed, two-stage message passing algorithm to generate network codes for single-source multicast of multi-resolution codes. The goal of this pushback algorithm is to maximize the total rate achieved by all receivers, while guaranteeing decodability of the base layer at each receiver. By conducting pushback and code assignment stages, this algorithm takes advantage of inter-layer as well as intra-layer coding. Numerical simulations show that in terms of total rate achieved, the pushback algorithm outperforms routing and intra-layer coding schemes, even with field sizes as small as 210(10 bits). In addition, the performance gap widens as the number of receivers and the number of nodes in the network increases. We also observe that naïve inter-layer coding schemes may perform worse than intra-layer schemes under certain network conditions.