Low-complexity scheduling algorithms for multi-channel downlink wireless networks

  • Authors:
  • Shreeshankar Bodas;Sanjay Shakkottai;Lei Ying;R. Srikant

  • Affiliations:
  • Department of ECE, The University of Texas at Austin;Department of ECE, The University of Texas at Austin;Department of ECE, Iowa State University;Department of ECE, Univ. of Illinois at Urbana-Champaign

  • Venue:
  • INFOCOM'10 Proceedings of the 29th conference on Information communications
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper considers the problem of designing scheduling algorithms for multi-channel (e.g., OFDM) wireless downlink networks with n users/OFDM sub-channels. For this system, while the classical MaxWeight algorithm is known to be throughput-optimal, its buffer-overflow performance is very poor (formally, we show it has zero rate function in our setting). To address this, we propose a class of algorithms called iHLQF (iterated Heaviest matching with Longest Queues First) that is shown to be throughput optimal for a general class of arrival/channel processes, and also rate-function optimal (i.e., exponentially small buffer overflow probability) for certain arrival/channel processes. iHLQF however has higher complexity than MaxWeight (n4 vs. n2 respectively). To overcome this issue, we propose a new algorithm called SSG (Server-Side Greedy). We show that SSG is throughput optimal, results in a much better per-user buffer overflow performance than the MaxWeight algorithm (positive rate function for certain arrival/channel processes), and has a computational complexity (n2) that is comparable to the MaxWeight algorithm. Thus, it provides a nice trade-off between buffer-overflow performance and computational complexity. These results are validated by both analysis and simulations.