Social action tracking via noise tolerant time-varying factor graphs

  • Authors:
  • Chenhao Tan;Jie Tang;Jimeng Sun;Quan Lin;Fengjiao Wang

  • Affiliations:
  • Tsinghua University, Beijing, China;Tsinghua University, Beijing, China;IBM TJ Watson Research Center, New York City, USA;Huazhong University of Science and Technology, Wuhan, China;Beijing University of Aeronautics and Astronautics, Beijing, China

  • Venue:
  • Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

It is well known that users' behaviors (actions) in a social network are influenced by various factors such as personal interests, social influence, and global trends. However, few publications systematically study how social actions evolve in a dynamic social network and to what extent different factors affect the user actions. In this paper, we propose a Noise Tolerant Time-varying Factor Graph Model (NTT-FGM) for modeling and predicting social actions. NTT-FGM simultaneously models social network structure, user attributes and user action history for better prediction of the users' future actions. More specifically, a user's action at time t is generated by her latent state at t, which is influenced by her attributes, her own latent state at time t-1 and her neighbors' states at time t and t-1. Based on this intuition, we formalize the social action tracking problem using the NTT-FGM model; then present an efficient algorithm to learn the model, by combining the ideas from both continuous linear system and Markov random field. Finally, we present a case study of our model on predicting future social actions. We validate the model on three different types of real-world data sets. Qualitatively, our model can uncover some interesting patterns of the social dynamics. Quantitatively, experimental results show that the proposed method outperforms several baseline methods for action prediction.