Solving schubert problems with Littlewood-Richardson homotopies

  • Authors:
  • Frank Sottile;Ravi Vakil;Jan Verschelde

  • Affiliations:
  • Texas A&M University, College Station, TX;Stanford University, Stanford, CA;University of Illinois at Chicago, Chicago, IL

  • Venue:
  • Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a new numerical homotopy continuation algorithm for finding all solutions to Schubert problems on Grassmannians. This Littlewood-Richardson homotopy is based on Vakil's geometric proof of the Littlewood-Richardson rule. Its start solutions are given by linear equations and they are tracked through a sequence of homotopies encoded by certain checker configurations to find the solutions to a given Schubert problem. For generic Schubert problems the number of paths tracked is optimal. The Littlewood-Richardson homotopy algorithm is implemented using the path trackers of the software package PHCpack.