A genetic algorithm for a global optimization problem arising in the detection of gravitational waves

  • Authors:
  • Daniela Di Serafino;Susana Gomez;Leopoldo Milano;Filippo Riccio;Gerardo Toraldo

  • Affiliations:
  • Department of Mathematics, Second University of Naples, Caserta, Italy;Institute of Applied Mathematics, National University of Mexico, Mexico City, Mexico;Department of Physical Sciences, University of Naples Federico II, Naples, Italy;Department of Mathematics, Second University of Naples, Caserta, Italy;DIAAT, University of Naples Federico II, Portici, Italy

  • Venue:
  • Journal of Global Optimization
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

The detection of gravitational waves is a long-awaited event in modern physics and, to achieve this challenging goal, detectors with high sensitivity are being used or are under development. In order to extract gravitational signals emitted by coalescing binary systems of compact objects (neutron stars and/or black holes), from noisy data obtained by interferometric detectors, the matched filter technique is generally used. Its computational kernel is a box-constrained global optimization problem with many local solutions and a highly nonlinear and expensive objective function, whose derivatives are not available. To tackle this problem, we designed a real-coded genetic algorithm that exploits characteristic features of the problem itself; special attention was devoted to the choice of the initial population and of the recombination operator. Computational experiments showed that our algorithm is able to compute a reasonably accurate solution of the optimization problem, requiring a much smaller number of function evaluations than the grid search, which is generally used to solve this problem. Furthermore, the genetic algorithm largely outperforms other global optimization algorithms on significant instances of the problem.