Performance and complexity tradeoffs of space-time modulation and coding schemes

  • Authors:
  • Nicholas B. Chang;Adam R. Margetts;Andrew L. McKellips

  • Affiliations:
  • MIT Lincoln Laboratory, Lexington, MA and Advanced Sensor Techniques Group;Advanced Sensor Techniques Group, MIT Lincoln Laboratory, Lexington, MA;Advanced Sensor Techniques Group, MIT Lincoln Laboratory, Lexington, MA

  • Venue:
  • Asilomar'09 Proceedings of the 43rd Asilomar conference on Signals, systems and computers
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Wireless communication using multiple-input multiple-output (MIMO) systems improves throughput and enhances reliability for a given total transmit power. Achieving a higher data rate in MIMO systems requires utilizing an effective space-time coding and modulation scheme. The appropriate algorithm to use for a system will depend on parameters such as the number of transmit/receive antennas, target spectral efficiency, complexity limitations, channel environment, and other factors. In this paper, we examine the performance of various two-transmit and four-transmit space-time coding schemes under different channel types and target data rates. We compare the performance of state of the art space-time coding schemes including direct non-binary LDPC GF(q) modulation, bit interleaved coded modulation using iterative detection, and space-time trellis coded modulation. We obtain a tradeoff between performance and complexity of these various schemes.