Dynamic TTL-Based Search in Unstructured Peer-to-Peer Networks

  • Authors:
  • Imen Filali;Fabrice Huet

  • Affiliations:
  • -;-

  • Venue:
  • CCGRID '10 Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Resource discovery is a challenging issue in unstructured peer-to-peer networks. Blind search approaches, including flooding and random walks, are the two typical algorithms used in such systems. Blind flooding is not scalable because of its high communication cost. On the other hand, the performance of random walks approaches largely depends on the random choice of walks. Some informed mechanisms use additional information, usually obtained from previous queries, for routing. Such approaches can reduce the traffic overhead but they limit the query coverage. Furthermore, they usually rely on complex protocols to maintain information at each peer. In this paper, we propose two schemes which can be used to improve the search performance in unstructured peer-to-peer networks. The first one is a simple caching mechanism based on resource descriptions. Peers that offer resources send periodic advertisement messages. These messages are stored into a cache and are used for routing requests. The second is a dynamic Time-To-Live (TTL) which enables messages to break their horizon. Instead of decreasing the query TTL by 1 at each hop, it is decreased by a value v such as 0