L₂ Kernel Classification

  • Authors:
  • JooSeuk Kim;Clayton Scott

  • Affiliations:
  • University of Michigan, Ann Arbor;University of Michigan, Ann Arbor

  • Venue:
  • IEEE Transactions on Pattern Analysis and Machine Intelligence
  • Year:
  • 2010

Quantified Score

Hi-index 0.14

Visualization

Abstract

Nonparametric kernel methods are widely used and proven to be successful in many statistical learning problems. Well--known examples include the kernel density estimate (KDE) for density estimation and the support vector machine (SVM) for classification. We propose a kernel classifier that optimizes the L_2 or integrated squared error (ISE) of a “difference of densities.” We focus on the Gaussian kernel, although the method applies to other kernels suitable for density estimation. Like a support vector machine (SVM), the classifier is sparse and results from solving a quadratic program. We provide statistical performance guarantees for the proposed L_2 kernel classifier in the form of a finite sample oracle inequality and strong consistency in the sense of both ISE and probability of error. A special case of our analysis applies to a previously introduced ISE-based method for kernel density estimation. For dimensionality greater than 15, the basic L_2 kernel classifier performs poorly in practice. Thus, we extend the method through the introduction of a natural regularization parameter, which allows it to remain competitive with the SVM in high dimensions. Simulation results for both synthetic and real-world data are presented.