A reaction-diffusion model of the human brain development

  • Authors:
  • Julien Lefèvre;Jean-François Mangin

  • Affiliations:
  • Laboratoire LSIS, Université Aix-Marseille II, France;LNAO, CEA, France

  • Venue:
  • ISBI'10 Proceedings of the 2010 IEEE international conference on Biomedical imaging: from nano to Macro
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

The anatomical variability of the human brain folds remains an unclear and challenging issue. Several hypotheses coexist for explaining the rapid development of cortical sulci and it is clear that understanding their variability would improve the comparison of anatomical and functional data across cohorts of subjects. In this article we propose to extend a model of cortical folding based on reaction-diffusion mechanisms. The originality of our approach lies in the fact that the surface on which these mechanisms take place is deformed iteratively and engenders geometric patterns that can be linked to cortical sulci. We show that some statistic properties of our model can reflect the variability of sulcal structures.