Achieving single channel, full duplex wireless communication

  • Authors:
  • Jung Il Choi;Mayank Jain;Kannan Srinivasan;Phil Levis;Sachin Katti

  • Affiliations:
  • Stanford University, Stanford, CA, USA;Stanford University, Stanford, CA, USA;Stanford University, Stanford, CA, USA;Stanford University, Stanford, USA;Stanford University, Stanford, USA

  • Venue:
  • Proceedings of the sixteenth annual international conference on Mobile computing and networking
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper discusses the design of a single channel full-duplex wireless transceiver. The design uses a combination of RF and baseband techniques to achieve full-duplexing with minimal effect on link reliability. Experiments on real nodes show the full-duplex prototype achieves median performance that is within 8% of an ideal full-duplexing system. This paper presents Antenna Cancellation, a novel technique for self-interference cancellation. In conjunction with existing RF interference cancellation and digital baseband interference cancellation, antenna cancellation achieves the amount of self-interference cancellation required for full-duplex operation. The paper also discusses potential MAC and network gains with full-duplexing. It suggests ways in which a full-duplex system can solve some important problems with existing wireless systems including hidden terminals, loss of throughput due to congestion, and large end-to-end delays.