Spectrum pricing games with bandwidth uncertainty and spatial reuse in cognitive radio networks

  • Authors:
  • Gaurav S. Kasbekar;Saswati Sarkar

  • Affiliations:
  • University of Pennsylvania, Philadelphia, PA, USA;University of Pennsylvania, Philadelphia, PA, USA

  • Venue:
  • Proceedings of the eleventh ACM international symposium on Mobile ad hoc networking and computing
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

In cognitive radio networks (CRN), primary users can lease out their unused bandwidth to secondary users in return for a fee. We study price competition in a CRN with multiple primaries and e secondaries in a region, where each primary tries to attract secondaries by setting a lower price for his bandwidth than other primaries. A CRN has two distinctive features, which makes the price competition very different from that in traditional commodity markets. First, in every slot, each primary may or may not have unused bandwidth available. So primaries are uncertain about the number of other primaries from whom they face competition. Second, spectrum is a commodity that allows spatial reuse: the same band can be simultaneously used at far-off locations without interference; on the other hand, simultaneous transmissions at neighboring locations on the same band interfere with each other. As a result, a primary cannot offer bandwidth at all locations, but must select an independent set of locations at which to offer it. Also, the choice of the independent set and the prices at those locations must be made jointly. We formulate price competition in a CRN as a game, taking into account both bandwidth uncertainty and spatial reuse. We analyze the game in a single slot, as well as its repeated version. In each case, we not only prove the existence of a Nash equilibrium, but also explicitly compute it. The expressions we obtain provide interesting insights into how the price competition evolves for different values of the system parameters. Moreover, for the game in a single slot, we prove the uniqueness of the Nash equilibrium in the class of symmetric equilibria.