A wideband inductorless LNA with local feedback and noise cancelling for low-power low-voltage applications

  • Authors:
  • Hongrui Wang;Li Zhang;Zhiping Yu

  • Affiliations:
  • Institute of Microelectronics, Tsinghua University, Beijing, China;Institute of Microelectronics, Tsinghua University, Beijing, China;Institute of Microelectronics, Tsinghua University, Beijing, China

  • Venue:
  • IEEE Transactions on Circuits and Systems Part I: Regular Papers
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

A wideband noise-cancelling low-noise amplifier (LNA) without the use of inductors is designed for low-voltage and low-power applications. Based on the common-gate-common-source (CG-CS) topology, a new approach employing local negative feedback is introduced between the parallel CG and CS stages. The moderate gain at the source of the cascode transistor in the CS stage is utilized to boost the transconductance of the CG transistor. This leads to an LNA with higher gain and lower noise figure (NF) compared with the conventional CG-CS LNA, particularly under low power and voltage constraints. By adjusting the local open-loop gain, the NF can be optimized by distributing the power consumption among transistors and resistors based on their contribution to the NF. The optimal value of the local open-loop gain can be obtained by taking into account the effect of phase shift at high frequency. The linearity is improved by employing two types of distortion-cancelling techniques. Fabricated in a 0.13-µm RF CMOS process, the LNA achieves a voltage gain of 19 dB and an NF of 2.8-3.4 dB over a 3-dB bandwidth of 0.2-3.8 GHz. It consumes 5.7 rnA from a 1-V supply and occupies an active area of only 0.025 mm2.